Python Machine Learning: Machine Learning and Deep Learning with Python, scikit-learn, and TensorFlow, 2nd Edition (English Edition) por Sebastian Raschka

February 21, 2020

Python Machine Learning: Machine Learning and Deep Learning with Python, scikit-learn, and TensorFlow, 2nd Edition (English Edition) de Sebastian Raschka está disponible para descargar en formato PDF y EPUB. Aquí puedes acceder a millones de libros. Todos los libros disponibles para leer en línea y descargar sin necesidad de pagar más.

Python Machine Learning: Machine Learning and Deep Learning with Python, scikit-learn, and TensorFlow, 2nd Edition (English Edition) por Sebastian Raschka
Titulo del libro : Python Machine Learning: Machine Learning and Deep Learning with Python, scikit-learn, and TensorFlow, 2nd Edition (English Edition)
Fecha de lanzamiento : September 20, 2017
Autor : Sebastian Raschka
Número de páginas : 624
Editor : Packt Publishing

Sebastian Raschka con Python Machine Learning: Machine Learning and Deep Learning with Python, scikit-learn, and TensorFlow, 2nd Edition (English Edition)

Key Features

  • Second edition of the bestselling book on Machine Learning
  • A practical approach to key frameworks in data science, machine learning, and deep learning
  • Use the most powerful Python libraries to implement machine learning and deep learning
  • Get to know the best practices to improve and optimize your machine learning systems and algorithms

Book Description

Machine learning is eating the software world, and now deep learning is extending machine learning. Understand and work at the cutting edge of machine learning, neural networks, and deep learning with this second edition of Sebastian Raschka's bestselling book, Python Machine Learning. Thoroughly updated using the latest Python open source libraries, this book offers the practical knowledge and techniques you need to create and contribute to machine learning, deep learning, and modern data analysis.

Fully extended and modernized, Python Machine Learning Second Edition now includes the popular TensorFlow deep learning library. The scikit-learn code has also been fully updated to include recent improvements and additions to this versatile machine learning library.

Sebastian Raschka and Vahid Mirjalili's unique insight and expertise introduce you to machine learning and deep learning algorithms from scratch, and show you how to apply them to practical industry challenges using realistic and interesting examples. By the end of the book, you'll be ready to meet the new data analysis opportunities in today's world.

If you've read the first edition of this book, you'll be delighted to find a new balance of classical ideas and modern insights into machine learning. Every chapter has been critically updated, and there are new chapters on key technologies. You'll be able to learn and work with TensorFlow more deeply than ever before, and get essential coverage of the Keras neural network library, along with the most recent updates to scikit-learn.

What you will learn

  • Understand the key frameworks in data science, machine learning, and deep learning
  • Harness the power of the latest Python open source libraries in machine learning
  • Explore machine learning techniques using challenging real-world data
  • Master deep neural network implementation using the TensorFlow library
  • Learn the mechanics of classification algorithms to implement the best tool for the job
  • Predict continuous target outcomes using regression analysis
  • Uncover hidden patterns and structures in data with clustering
  • Delve deeper into textual and social media data using sentiment analysis

Table of Contents

  1. Giving Computers the Ability to Learn from Data
  2. Training Simple Machine Learning Algorithms for Classification
  3. A Tour of Machine Learning Classifiers Using Scikit-Learn
  4. Building Good Training Sets - Data Preprocessing
  5. Compressing Data via Dimensionality Reduction
  6. Learning Best Practices for Model Evaluation and Hyperparameter Tuning
  7. Combining Different Models for Ensemble Learning
  8. Applying Machine Learning to Sentiment Analysis
  9. Embedding a Machine Learning Model into a Web Application
  10. Predicting Continuous Target Variables with Regression Analysis
  11. Working with Unlabeled Data - Clustering Analysis
  12. Implementing a Multilayer Artificial Neural Network from Scratch
  13. Parallelizing Neural Network Training with TensorFlow
  14. Going Deeper - The Mechanics of TensorFlow
  15. Classifying Images with Deep Convolutional Neural Networks
  16. Modeling Sequential Data using Recurrent Neural Networks

Los más vendidos Libros Juegos para aprender a razonar (6-8 años) (Terapias Juegos Didácticos) Caligrafía creativa Isadora Moon va a una fiesta de pijamas (Isadora Moon) Aprende a dibujar con Pokémon (Colección Pokémon) El Lazarillo De Tormes (Clásicos Adaptados) Isadora Moon celebra su cumpleaños (Isadora Moon) Primeros ejercicios de escritura 4-5 años (Aprendo jugando) 100 enigmas para triunfar en matemáticas (10-11 años) (Terapias Juegos Didácticos) Método Fotosilábico: 1.ª Cartilla Mini Abremente para Niños de 2-3 Años Mitos Griegos (Colección Cucaña) Primeros ejercicios de cálculo 4-5 años (Aprendo jugando) - 9788498257106 501 consejos para tus primeros dibujos: ¡Un montón de consejos y trucos para ser el dibujante más rápido del Oeste! (Actividades y destrezas) Mini Abremente para Niños de 4-5 Años All About Britain ESO 1 Isadora Moon y el hechizo mágico (Isadora Moon) La Ratonera (Aula de Literatura) Micho 1 Método de lectura castellana - 9788421650684 La Historia Del Arte - 16ª Edición English Grammar in Use 4th with Answers Harry Potter y el Prisionero de Azkaban: 3 Cómo explicar física cuántica con un gato zombi (No ficción ilustrados) Abremente. 5-6 Años Isadora Moon va de excursión (FICCIÓN INFANTIL) Mis primeros juegos de cálculo mental (6-7 años) (Terapias Juegos Matemáticos) - 9788415612551 (Terapias Juegos Didácticos) Isadora Moon va al colegio (FICCIÓN INFANTIL) Isadora Moon va al ballet (FICCIÓN INFANTIL) Abremente. 250 Preguntas y Respuestas, 6-7 Años Rocas, minerales y gemas (Enciclopedias) Método Fotosilábico: 2.ª Cartilla Mapache quiere ser el primero (Somos8) Matilda Animal farm: A Fairy Story (Penguin Essentials) La Celestina - Clasicos Adaptados N/c (Clásicos Adaptados) - 9788431615116 Diccionario Bilingue Cambridge Spanish-English Flexi-cover Pocket edition Letras mayúsculas (desde 3 años) (Castellano - Material Complementario - Grandes Cuadernos) - 9788421654187 All about usa 2 eso La historia interminable Rubio 01 - Caligrafía Escolar Rubio Netter Cuaderno de anatomía para colorear - 2ª Edición LECTURAS COMPRENSIVAS RUBIO+5 INICIACION A LA LECTURA Método fotosilábico: 3.ª Cartilla. - 9788467832327 OPOSICIONES DOCENTES. Claves para conseguir tu sueño Abremente. 3 - 4 Años LECTURAS COMPRESIVAS RUBIO +4: INICIACIÓN A LA LECTURA Caligrafía Escolar Rubio - Abecedario, Frases Y Números: 4,5,6,7,8,9 y 0 - Número 05 Primeros ejercicios de escritura 5-6 años (Aprendo jugando) El conde Lucanor, ESO. Material auxiliar (Clásicos Adaptados) - 9788431615345 Mayúsculas. 40 Páginas Con Actividades Para Escribir Y Borrar Mis problemas favoritos 3.1 / Editorial GEU / 3º Primaria / Mejora la resolución de problemas / Recomendado como repaso / Con actividades sencillas