Python Machine Learning: Machine Learning and Deep Learning with Python, scikit-learn, and TensorFlow, 2nd Edition (English Edition) por Sebastian Raschka

September 21, 2019

Obtenga el libro de Python Machine Learning: Machine Learning and Deep Learning with Python, scikit-learn, and TensorFlow, 2nd Edition (English Edition) de Sebastian Raschka en formato PDF o EPUB. Puedes leer cualquier libro en línea o guardarlo en tus dispositivos. Cualquier libro está disponible para descargar sin necesidad de gastar dinero.

Python Machine Learning: Machine Learning and Deep Learning with Python, scikit-learn, and TensorFlow, 2nd Edition (English Edition) por Sebastian Raschka
Titulo del libro : Python Machine Learning: Machine Learning and Deep Learning with Python, scikit-learn, and TensorFlow, 2nd Edition (English Edition)
Fecha de lanzamiento : September 20, 2017
Autor : Sebastian Raschka
Número de páginas : 624
Editor : Packt Publishing

Sebastian Raschka con Python Machine Learning: Machine Learning and Deep Learning with Python, scikit-learn, and TensorFlow, 2nd Edition (English Edition)

Key Features

  • Second edition of the bestselling book on Machine Learning
  • A practical approach to key frameworks in data science, machine learning, and deep learning
  • Use the most powerful Python libraries to implement machine learning and deep learning
  • Get to know the best practices to improve and optimize your machine learning systems and algorithms

Book Description

Machine learning is eating the software world, and now deep learning is extending machine learning. Understand and work at the cutting edge of machine learning, neural networks, and deep learning with this second edition of Sebastian Raschka's bestselling book, Python Machine Learning. Thoroughly updated using the latest Python open source libraries, this book offers the practical knowledge and techniques you need to create and contribute to machine learning, deep learning, and modern data analysis.

Fully extended and modernized, Python Machine Learning Second Edition now includes the popular TensorFlow deep learning library. The scikit-learn code has also been fully updated to include recent improvements and additions to this versatile machine learning library.

Sebastian Raschka and Vahid Mirjalili's unique insight and expertise introduce you to machine learning and deep learning algorithms from scratch, and show you how to apply them to practical industry challenges using realistic and interesting examples. By the end of the book, you'll be ready to meet the new data analysis opportunities in today's world.

If you've read the first edition of this book, you'll be delighted to find a new balance of classical ideas and modern insights into machine learning. Every chapter has been critically updated, and there are new chapters on key technologies. You'll be able to learn and work with TensorFlow more deeply than ever before, and get essential coverage of the Keras neural network library, along with the most recent updates to scikit-learn.

What you will learn

  • Understand the key frameworks in data science, machine learning, and deep learning
  • Harness the power of the latest Python open source libraries in machine learning
  • Explore machine learning techniques using challenging real-world data
  • Master deep neural network implementation using the TensorFlow library
  • Learn the mechanics of classification algorithms to implement the best tool for the job
  • Predict continuous target outcomes using regression analysis
  • Uncover hidden patterns and structures in data with clustering
  • Delve deeper into textual and social media data using sentiment analysis

Table of Contents

  1. Giving Computers the Ability to Learn from Data
  2. Training Simple Machine Learning Algorithms for Classification
  3. A Tour of Machine Learning Classifiers Using Scikit-Learn
  4. Building Good Training Sets - Data Preprocessing
  5. Compressing Data via Dimensionality Reduction
  6. Learning Best Practices for Model Evaluation and Hyperparameter Tuning
  7. Combining Different Models for Ensemble Learning
  8. Applying Machine Learning to Sentiment Analysis
  9. Embedding a Machine Learning Model into a Web Application
  10. Predicting Continuous Target Variables with Regression Analysis
  11. Working with Unlabeled Data - Clustering Analysis
  12. Implementing a Multilayer Artificial Neural Network from Scratch
  13. Parallelizing Neural Network Training with TensorFlow
  14. Going Deeper - The Mechanics of TensorFlow
  15. Classifying Images with Deep Convolutional Neural Networks
  16. Modeling Sequential Data using Recurrent Neural Networks

Los más vendidos Libros Tecnologías de la información y comunicación I - 1º Bachillerato - 9788470635038 El enemigo conoce el sistema: Manipulación de ideas, personas e influencias después de la economía de la atención (Sociedad) Máquinas como yo (Panorama de narrativas nº 1010) Dominar el Manga. 30 lecciones de dibujo del creador de AKIKO (Espacio De Diseño) Aprende Python en un fin de semana Steve Jobs (Bestseller (debolsillo)) Máquinas como yo: 1010 (Panorama de narrativas) Tecnologías de la información y de la comunicación. 1 Bachillerato. Savia - 9788467576603 No me hagas pensar. Actualización (Títulos Especiales) Cracking the Coding Interview, 6th Edition: 189 Programming Questions and Solutions Aprende Python en un fin de semana Clean Architecture: A Craftsman's Guide to Software Structure and Design (Robert C Martin) Novacene AWS Certified Solutions Architect Study Guide: Associate SAA-C01 Exam Linear Algebra and Learning from Data Gira y aprende: Tablas de Multiplicar (APRENDIZAJE Y DESARROLLO) Make: Getting Started with Processing: A Hands-On Introduction to Making Interactive Graphics (Make: Technology on Your Time) The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Second Edition (Springer Series in Statistics) Estructuras Discretas Life 3.0 SEO. Técnicas avanzadas (Social Media) Vida 3.0 (Historia) Deep Learning: Step-by-Step | A Sensible Guide Presenting the Concepts of Deep Learning With Real-World Examples (Machine Learning Series Book 2) (English Edition) Practical Programming, 3e Gödel, Escher, Bach: Un eterno y grácil bucle (Divulgación) - 9788490660690 Windows 10 Troubleshooting: Windows 10 Manuals, Display Problems, Sound Problems, Drivers and Software: Windows 10 Troubleshooting: How to Fix Common Problems ... Optimize Windows 10) (English Edition) An Introduction to Statistics with Python: With Applications in the Life Sciences (Statistics and Computing) El instinto de la conciencia: Cómo el cerebro crea la mente DevOps y el camino de baldosas amarillas Accelerate: The Science of Lean Software and Devops: Building and Scaling High Performing Technology Organizations Robótica: Control de Robots Manipuladores The TOGAF ® Standard, Version 9.2 - A Pocket Guide (TOGAF series) What's Your Digital Business Model?: Six Questions to Help You Build the Next-Generation Enterprise Site Reliability Engineering: How Google Runs Production Systems On Intelligence Cómo ser un Tester: Introducción a las Pruebas de Software Inteligencia artificial: 101 cosas que debes saber hoy sobre nuestro futuro (COLECCION ALIENTA) GCSE Computer Science Theory and Practice: Python Powered for Edexcel 2018. Second Edition Programming El mundo GENUINO-ARDUINO. Curso práctico de formación El guión del siglo 21 (Fuera de Campo) FORTNITE Official 2020 Calendar (Official Fortnite Books) Deep Learning (Adaptive Computation and Machine Learning series) We have been harmonised: Life in China's surveillance state (English Edition) Artificial Intelligence: A Modern Approach, Global Edition Técnicas y procesos en instalaciones domóticas y automáticas (Electricidad Electronica) Cambridge IGCSE computer science. Per le Scuole superiori AI Superpowers: China, Silicon Valley, and the New World Order The Internet of Money Volume Two: A collection of talks by Andreas M. Antonopoulos: Volume 2 Big data como activo de negocio (Social Media) El Libro Negro del Programador: Cómo conseguir una carrera de éxito desarrollando software y cómo evitar los errores habituales